
An Overview of Present NoSQL Solutions and Features

Tak-Lon (Stephen) Wu
Computer Science, School of Informatics and Computing

Indiana University, Bloomington, IN
taklwu@indiana.edu

Abstract

NoSQL Database is an emerging research topic as the amount of stored digital information is
dramatically growing each minute. In our current era of extreme data scales, NoSQL meets the
requirements of the large-scale distributed computing environment, which provides scalability,
high availability, high performance and reliability. NoSQL solutions share common features, but
feature several different approaches. This study aims to provide an overview of modern NoSQL
database solutions and discusses their challenges, features, and use cases.

1. Introduction

The database system is one of the most important components of any kind of large-scale
system. Over the last 30 years, SQL database systems, particularly the Relational Database
Management System (RDBMS), have dominated this field due to its important ACID [1] model.
However, in the recent Cloud Computing age, the amount of stored data grows rapidly to the
thousand terabyte and even hundred petabyte scale; thus, the scalability of SQL storage is
being questioned. In addition, traditional SQL solutions do not work well with the agile
development of modern technologies, which may entail large amounts of complex code and in
some cases, even decrease the performance. To address these scalability and performance
issues, NoSQL solutions have become a very popular topic.

The phrase NoSQL was first used in 1998 as a name for a lightweight relational database
that did not expose the SQL interface. In early 2009, this name was reintroduced by Eric Evans,
a Rackspace employee, at an event held to discuss and develop open source distributed
databases; he coined the phrase during a conversation with an event organizer. The term
NoSQL generally stands for “Not only Structured Query Language,” and the idea of using
NoSQL is to fit the data; neither SQL nor the RDBMS model meets the functional requirements.
In particular, the continuing trend of cloud computing and the growth of semantic social
networks are significant factors that push the development of NoSQL storage in order to provide
services for their distributed systems; many Cloud providers have built their own NoSQL
solutions such as Google Bigtable [2], Amazon Dynamo [3], Apache HBase [4], and Apache
Cassandra [5] to ensure consistency, availability and scalability for their heavy daily workloads
and the billions of users they service. However, according to the CAP [6] theorem, there exists
tradeoffs in distributed systems among consistency, availability and scalability.

When comparing SQL and NoSQL, discussions normally focus on ACID (Atomicity
Consistent Isolation Durability) and BASE (Basically, Available, Soft state, Eventually consistent)
[7] models. The ACID model can ensure strict data consistency of online transaction processing
while using an exclusive lock mechanism; SQL follows most of these principles in order to
provide data identity to applications. It is very important that data must be guaranteed with full
consistency even when partitioned, e.g. a commercial account balance is an example of this
case. However, according to the CAP theorem, this approach makes SQL data storage difficult
to scale with cost and performance issues on a distributed environment when network partitions
are required. NoSQL is considered to be solutions and is built beyond the BASE mode to loosen
the restrictions with these features. In some senses, large-scale applications that do not require

strong data consistency at every moment benefit from using NoSQL solutions. It is worth
mentioning that not all NoSQL solutions operate strictly within the scope of the BASE model.
With specific configurations, NoSQL solutions can also function as much as ACID [2-4, 8-10].

This paper is structured as following: Section 2 briefly discusses the challenges for building
a NoSQL system. Section 3, we show a classification for existing NoSQL solutions. Section 4,
the features and tradeoffs among consistency, scalability, availability, and performance are
described. Section 5, we present some use cases. Finally, the paper provides a brief conclusion
in Section 6.

2. Design Challenges

Similar to any other large-scale distributed/cloud systems, NoSQL solutions are built with
common goals and purposes. They are scalability, availability, and high performance access
[11].

Scalability: A fundamental design goal of NoSQL solution is to store unstructured data over
a distributed environment, where tables are large and stored separately across nodes. It also
aims to provide “unlimited” data capacity for rapidly growing data. Therefore, the design of data
model, system architecture and data retrieval model are fundamentally the key factors for
supporting these features.

Availability: since data is stored in a distributed fashion, network failures are common when
committing updates. So, it must be able to recover from lost data commits and provide up-to-
date data access in acceptable range of latency.

High performance access: NoSQL solution is built for content management, data
management and computing intensive applications, high latency for any Read/Write operations
is not accepted.

3. Classification of NoSQL solutions

More and more organizations and commercial companies have adopted NoSQL solutions
to support their projects as data growth has accelerated. Most of these data are unstructured or
semi-structured, which does not fit with the traditional SQL database model in which data
shares a common table record with standard entities and limited data lengths. Moreover, since
unstructured or semi-structured data features different characteristics, different approaches are
taken with different types of NoSQL solutions. There are mainly three types of NoSQL database:
column-based, key-value based and Documents-based [12].

3.1. Column-based solution

Most of the RDBMS database is organized in tables and for most people, it is easy to
understand. Traditional RDBMS stores sets of information in a row-based table. This approach
is due to the sequential data access on magnitude hard disk and is suitable for heavy writes
record. However, it is not optimized for writing data to a smaller subset of records; in order to
update the records, it must read the entire set of tables. In this case, a column-based record
solution works well to serve these types of semi-structured data as write-optimized operations.
BigTable, HBase, and Cassandra are built based on this feature in order to provide high
performance read. All of these solutions provide the ability to have distributed tables across
thousands of machines to provide a highly available and scalable storage system. Figure 1
shows a column family structure for this solution.

Figure 1. Column-based record Figure 2. Document-based record (JSON)

3.2. Key-value-based solution

A key-value based solution stores anything as key-value pairs, which implies stored values
retrieved by keys. The key-value pairs can be both structured and unstructured, and it has the
advantage of being able to store massive amounts of data, yet retain simple access by a
primary key. Generally, the value is an object of implementation language or a string known by
the program. Dynamo is the most signature design that uses this model. This system’s data is
partitioned and replicated using consistent hashing in order to provide scalability and availability.
Riak is another example.

3.3. Document-based solution

A Document-based Solution is a type of database that stores uniform fields of each record
with non-standard amount of information. As this semi-structured database has no specific
schema, information or attributes can be added to any field after it has been inserted into the
database; compared to the SQL database, this approach provides flexibility and extendibility.
Normally, this type of database uses standard document schema such as XML, JSON, BSON
or similar metadata technologies to compose semi-structured information. Here, it must be
mentioned that no empty field is allowed to store on this database. Typically, MongoDB [9] and
CouchDB [8] are two examples of these technologies. Figure 2 shows a JSON format record of
this solution.

4. Features and Tradeoffs

Many NoSQL systems have been built for serving large-scale data distributed over networks,
and these systems provide high-level data availability. Table 1 shows the key features of
several modern NoSQL solutions, as discussed above. It is interesting to see that all solutions
have simple APIs to handle their queries with a small subset of standard SQL-like query
language, usually just the get and put functions. This is due to agile data model changes to
achieve various goals, which makes higher-level queries less significant to provide general
solution to every type of data. Also, NoSQL technologies have become extremely optimized to
developers such it is important to clearly understand their needs and purposes based on use
cases. For instance, developers could choose either a strong or eventual data consistency
model in regard of their system needs. The tradeoffs between these two models, as mentioned
above, are availability, durability and performance/throughput.

4.1. Availability

Replication is used to guarantee data availability among these systems. With strong data
consistency, all of the above solutions lock or update all the replicas across the distributed
environment, which takes a certain amount of time. In other words, before commits are
synchronized, data may not be reached. For those applications that are heavily run 24/7, clients
cannot accept high latency. One solution is to loose the read access for data with less

persistence concerns, and makes the service becomes highly available in order to serve
incoming requests. Thus, the data is being updated in a defined acceptable time frame.
Apparently, this may cause inconsistent reading to a data item. For example, Amazon Dynamo
can be set to the amount of quorum responses for requests to ensure every available replica
has the same set of data, and the waiting time becomes longer as more quorum replicas’
confirmations are required.

4.2. Durability and performance

To prevent data loss, records may be flushed to disk before the system returns control to the
next operation. The disadvantage of this immediate consistency involves too many disk I/Os
and too much latency. Cassandra proposes a per-operation basis consistency to provide flexible
write operations without waiting for records to be synchronized to disk. By default, if the Write
Ahead Log (WAL) is disable, HBase does not sync log updates immediately to disk; The data
are kept in memory, and it will be flush to disk periodically. So, unsaved data in between flush
may be lost if any write operations fail. This is due to use cases of HBase, which are primarily to
run throughput-oriented batch-processing jobs. CouchDB and MongoDB generally run as an
eventually consistent model, where in-memory records are periodically flushed to disk.

5. Use Cases

NoSQL databases generally serve as content management center and store different type
of records. In addition, these solutions aim to provide the MapReduce support for large-scale
data analytics.

5.1. Content and Data management

ebay [13] presents a use cases for the social signals features using Cassandra to update
social-oriented - like/own/wanted functions on item listing pages. eBay has millions of users and
listing items, billions of database queries are received every day. In this sense, the social-
oriented feeds are huge and must store across data centers. Also, it needs high throughout
writes operation to backend databases as the read-insensitive social feeds update massively
and frequently. Facebook uses HBase to support their messaging service [14]. The idea is
similar - it needs fast-write operations to store record to backend database, it must be scalable
due to the huge amount of social feeds, the message body is small, and aims to only retrieve
most recently messages. All of these features match with the HBase/HDFS append-only design.

5.2. MapReduce support

Cassandra and HBase are considered as alternative implementations of BigTable, which
they natively support Hadoop MapReduce runs on Hadoop Distributed File System (HDFS). [15,
16] study the possibilities of using HBases to stored inverted indices of the original datasets.
Indexed records are simultaneously uploaded to HBase by a MapReduce program for data
analytics. Other than using Cassandra as a database, DataStax [17] has an enterprise solution
which runs it as a HDFS-like file system for serving Hadoop computation. MongoDB and
CouchDB are considered as general databases, which do not interface with MapReduce
runtimes. Instead, they have their own internal map/reduce implementations for data
aggregation and analysis. Dynamo is a completely different database deployment on Amazon
cloud; it can communicate with Amazon Elastic MapReduce for importing to and exporting data
from HDFS.

6. Conclusion

This paper mainly discusses the NoSQL solutions as large-scale database systems; it does
not claim that SQL-type database is insufficient or that it should be replaced by NoSQL-type
database. In some cases, such as online bank transactions and commercial sales data
warehouses, SQL storage is still better than any current technologies that have been presented
in this paper. With different agreement regarding the consistency model, under some
circumstances SQL and NoSQL actually function identically to one another.

As the trend of cloud computing and social network continues to impact the way to store
data in database, there are certain amounts of pure computer science-related approaches that
need the improvements offered by NoSQL technologies to store petabyte scale data. Most of
them share the common semi-structured data model, which must aggregate across the complex
distributed computing environment. Data and metadata partitions are apparently required in
these systems, which provide the ease of scalable solutions to cloud storage. Simultaneously, in
order to provide high availability and fault tolerance, those partitions are all duplicated to each
machine within the same environment. With either strong or weak consistency, for the general
database activities, these solutions provide different mechanisms for satisfying the ACID or
BASE model.

In sum, NoSQL is not a brand new database technology; yet, it provides the possibility and
flexibility of handling complex semi-structured data and optimizes solutions to different types of
data in this massive and data-intensive era of large-scale computing.

NoSQL
solution Data Model Lang. Query Model Sharding Replication Consistency MapReduce

Support Applications

BigTable

Column-based
table.
Indexs over
row-key and
columns keys
with multiple
timestamps

C++

Extendable
Application level
queries with
Google internal
C++ client library

Tables are
partitioned by row-
key into tablets
(keys range) stored
in different tablet
servers. A central
metadata server
maintains a full
overview of the
entire system.

Use Google File
System (GFS) to
store tablets and logs
on file level

Strong consistency as
each tablet can only
store on one tablet
server.

Support Google
MapReduce

Search engines,
high throughput

batch data
analytics, latency-
sensitive database

Cassandra

Column-based
table, Indexs
over row-key
and columns
keys with
multiple names
or timestamps

Java

Extendable
Cassandra API
initially consist
insert, get and
delete.

Data are
partitioned with an
order pre-serving
consistent hashing
on a distributed
“ring” position.

Each data item is
replicated as N times
depend on system
configuration. Use
Zookeeper to elect
the leader responses
for a range of data on
the ring.

Eventually
consistency, based on
the level required by
client, the system
routes requests to
closest or all replicas
and wait for quorum
response.

Possibly integrated
with Hadoop as
HDFS-like storage,
DataStax’s solution
currently is the
main track

Search engines,
log data analytics

HBase

Column-based
table.
Indexs over
row-key and
columns keys
with multiple
timestamps

Java

Shell like
command query.
Java, REST and
Thrift API are
supported

Tables are
partitioned by row-
key into regions
stored in different
region servers.
Similar to
BigTable, it has a
central metadata
server to maintain
an overview of all
regions.

Use HDFS to store
replication with
selectable factors

Strong consistency as
each record must be
updated on assigned
region server and
replications before
read.

Native support for
Hadoop

MapReduce

Search engines,
high throughput

batch data
analytics

Dynamo

Key-value
based data
with structured
or semi-
structured
object.

Java
Extendable API
initially consist
get and put.

Data are
partitioned with an
order pre-serving
consistent hashing
on a distributed
“ring” position.

Each data item is
replicated as N times
depend on system
configuration.
Response nodes
handle a range of
data on the ring.

Eventually
consistency, based on
the level required by
client, the system
routes requests to
closest or all replicas
and wait for quorum
response.

Could be used with
Amazon EMR for

exporting and
importing data from

EMR HDFS

Search engines,
log data analysis

supported by
Amazon EMR

CouchDB
Document-
based (JSON)
with any
number of field

Erlang

Provide a HTTP
API to views the
indexed
metadata.
Indexed metadata
can be created
and updated with
user-defined
MapReduce
Functions.

No built-in
partitioning, but
can be support by
the nature of using
MapReduce model
across different
database.

A CouchDB built-in
synchronization
mechanism using
MVCC to replicate
data to any
instances.

Based on the
replication
configuration to all
replica or a subset
replica to provide
strong or eventual
consistency

MapReduce is
supported as
internal views

functions for data
analysis (like,

select and where in
SQL)

MySQL-like
Applications,

dynamic queries,
less data updates

MongoDB

Document-
based (Binary
JSON) with
structured
object

C++
Queries as BSON
objects sent to
MongoDB driver.

Data are
partitioned to shard
nodes. Routing
services nodes
maintain the
metadata and
handle client
requests.

Asynchronous
master-slave
relationship that one
master has the writes
and transaction log
privilege to a set of
replica slaves

Strong consistency
when only has one
master node, eventual
consistency if read
send to slave during
writes.

MapReduce is
supported as
internal views
functions (like,

select and where in
SQL)

MySQL-like
Applications,

dynamic queries,
many data updates

Table 1. Modern NoSQL solutions

Reference

[1] Jim Gray and Tony Hey. The Fourth Paradigm: Data-Intensive Scientific Discovery,
2010 [accessed 2010 October 21]; Available from:
http://research.microsoft.com/en-us/collaboration/fourthparadigm/.

[2] Fay Chang, Jeffrey Dean, Sanjay Ghemawat, Wilson C. Hsieh, Deborah A. Wallach,
Mike Burrows, Tushar Chandra, Andrew Fikes, and Robert E. Gruber, Bigtable: A
Distributed Storage System for Structured Data. ACM Trans. Comput. Syst., 2008.
26(2): p. 1-26. DOI:10.1145/1365815.1365816

[3] Giuseppe DeCandia, Deniz Hastorun, Madan Jampani, Gunavardhan Kakulapati,
Avinash Lakshman, Alex Pilchin, Swaminathan Sivasubramanian, Peter Vosshall,
and Werner Vogels, Dynamo: amazon's highly available key-value store. SIGOPS
Oper. Syst. Rev., 2007. 41(6): p. 205-220. DOI:10.1145/1323293.1294281

[4] Apache. Hbase implementation of Bigtable on Hadoop File System, 2010
[accessed 2010 June 5]; Available from: http://hbase.apache.org/.

[5] Avinash Lakshman and Prashant Malik, Cassandra: a decentralized structured
storage system. SIGOPS Oper. Syst. Rev., 2010. 44(2): p. 35-40.
DOI:10.1145/1773912.1773922

[6] Seth Gilbert and Nancy Lynch, Brewer's conjecture and the feasibility of
consistent, available, partition-tolerant web services. SIGACT News, 2002. 33(2): p.
51-59. DOI:10.1145/564585.564601

[7] Dan Pritchett, BASE: An Acid Alternative. Queue, 2008. 6(3): p. 48-55.
DOI:10.1145/1394127.1394128

[8] J. Chris Anderson, Jan Lehnardt, and Noah Slater, CouchDB: The Definitive Guide
Time to Relax. 2010, ISBN: 0596155891, 9780596155896: O'Reilly Media, Inc. p.272.

[9] Eelco Plugge, Tim Hawkins, and Peter Membrey, The Definitive Guide to MongoDB:
The NoSQL Database for Cloud and Desktop Computing. 2010, ISBN: 1430230517,
9781430230519: Apress. p.328.

[10] Brian F. Cooper, Raghu Ramakrishnan, Utkarsh Srivastava, Adam Silberstein,
Philip Bohannon, Hans-Arno Jacobsen, Nick Puz, Daniel Weaver, and Ramana
Yerneni, PNUTS: Yahoo!'s hosted data serving platform. Proc. VLDB Endow., 2008.
1(2): p. 1277-1288.

[11] B. G. Tudorica and C. Bucur. A comparison between several NoSQL databases
with comments and notes. in Roedunet International Conference (RoEduNet), 2011
10th. 2011.

[12] N. Leavitt, Will NoSQL Databases Live Up to Their Promise? Computer, 2010. 43(2):
p. 12-14. DOI:10.1109/mc.2010.58

[13] Jay Patel. Buy It Now! Cassandra at eBay, 2012; Available from:
http://www.datastax.com/wp-content/uploads/2012/08/C2012-BuyItNow-
JayPatel.pdf.

[14] Dhruba Borthakur, Joydeep SenSarma, and Jonathan Gray, Apache Hadoop Goes
Realtime at Facebook, in SIGMOD. 2011, ACM: Athens, Greece. p. 4503-0661.

[15] Xiaoming Gao, Vaibhav Nachankar, and Judy Qiu, Experimenting lucene index on
HBase in an HPC environment, in Proceedings of the first annual workshop on
High performance computing meets databases. 2011, ACM: Seattle, Washington,
USA. p. 25-28.

[16] Ioannis Konstantinou, Evangelos Angelou, Dimitrios Tsoumakos, and Nectarios
Koziris, Distributed indexing of web scale datasets for the cloud, in Proceedings
of the 2010 Workshop on Massive Data Analytics on the Cloud. 2010, ACM:
Raleigh, North Carolina. p. 1-6.

[17] DataStax; Available from: http://www.datastax.com/.

http://research.microsoft.com/en-us/collaboration/fourthparadigm/
http://hbase.apache.org/
http://www.datastax.com/wp-content/uploads/2012/08/C2012-BuyItNow-JayPatel.pdf
http://www.datastax.com/wp-content/uploads/2012/08/C2012-BuyItNow-JayPatel.pdf
http://www.datastax.com/

